
1

© 2014 Wind River

Kernel Debugging

and Tracing

Jason Wessel
- Product Architect for Wind River Linux

- Kernel.org KDB/KGDB Maintainer

August 20th, 2014

2

© 2014 Wind River

Agenda

Some debugger/tracing history

Several demonstrations

Given tools today, what do you need?

*** Presentation found at:
http://kgdb.wiki.kernel.org ***

http://kgdb.wiki.kernel.org/

3

© 2014 Wind River

Kernel Debugger History

Pre 2008-2010

KGDB core merged

KDB shell

Early debug with USB EHCI and VGA

Atomic KMS and ftrace support

Agent Proxy

2011~ today

Maintenance / bug fixes

4

© 2014 Wind River

Sharing the console - kgdboc

agent-proxy

Target System

With serial port

For console access

telnet localhost 2223

gdb

target remote localhost:2222

5

© 2014 Wind River

EHCI Debug Port
Great for when you do not have rs232

Higher speed than rs232

Works with KGDB

kgdbdbgp=0

Use it as a Linux Console

console=ttyUSB0 AND/OR earlyprintk=kdbgp0

Read more in your kernel source tree:

Documentation/x86/earlyprintk.txt

You can buy one at

http://www.semiconductorstore.com/cart/pc/viewPrd.asp?idproduct=12083

6

© 2014 Wind River

What is in the pipe?
Merge for next window

KDB kiosk mode

FIQ debugger for ARM

Experiments

Break point set from kernel command line

7

© 2014 Wind River

Volunteers?

ARM HW break points, sw stepping?

RFC’ed to death

KGDB for USB serial and USB keyboards

Maybe a kgdb over ethernet V2 (still needed?)

8

© 2014 Wind River

To Stop or Not to stop?
KGDB is a stop mode debugger

One Way Trip to a reboot in may cases

Most applications don’t want to stop

STOP

9

© 2014 Wind River

KGDB is not for production!
Here is a video to show you why not to leave KGDB activated
indefinitely.

https://www.youtube.com/watch?v=gWXxeUZczNE

Play

Video

https://www.youtube.com/watch?v=gWXxeUZczNE

10

© 2014 Wind River

How we got root? (1 of 4)
.gdbinit file:

python

sys.path.insert(0, '/home/jwessel')

import offsets

end

11

© 2014 Wind River

How we got root? (2 of 4)
/home/jwessel/offsets.py

import gdb

class HOffsets(gdb.Command):

 def __init__(self):

 super (HOffsets, self).__init__ ('hoffsets-of', gdb.COMMAND_DATA)

 def invoke(self, arg, from_tty):

 argv = gdb.string_to_argv(arg)

 if len(argv) != 1:

 raise gdb.GdbError('offsets-of takes exactly 1 argument.')

 stype = gdb.lookup_type(argv[0])

 gdb.write("%s {\n" % argv[0])

 for field in stype.fields():

 gdb.write(" %s => 0x%x\n" % (field.name, field.bitpos//8))

 gdb.write("}\n")

class Offsets(gdb.Command):

 def __init__(self):

 super (Offsets, self).__init__ ('offsets-of', gdb.COMMAND_DATA)

 def invoke(self, arg, from_tty):

 argv = gdb.string_to_argv(arg)

 if len(argv) != 1:

 raise gdb.GdbError('offsets-of takes exactly 1 argument.')

 stype = gdb.lookup_type(argv[0])

 gdb.write("%s {\n" % argv[0])

 for field in stype.fields():

 gdb.write(" %s => %d\n" % (field.name, field.bitpos//8))

 gdb.write("}\n")

Offsets()

HOffsets()

12

© 2014 Wind River

How we got root? (3 of 4)
Lookup offsets with: gdb vmlinux

hoffsets-of “struct task_struct”

real_cred => 0x480

hoffsets-of “struct cred”

uid => 0x4

euid => 0x14

13

© 2014 Wind River

How we got root? (4 of 4)
sysrq-g # To enter the debugger

ps

md8c1 0xffff8800068907c0+0x480

Memory Display 8 byte words 1 column at hex offset 0x480

mm4 0xffff880006878f00+0x4 0

Memory Modify 4 bytes at hex offset 4 for the uid

mm4 0xffff880006878f00+0x14 0

Memory Modify 4 bytes at hex offset 14 for the euid

14

© 2014 Wind River

Better than KGDB?
Good

KGDB / KDB

Better

QEMU/KVM OR Virtual box OR vmware backend debugger

kdump/kexec

Best

ICE / JTAG (usb or ethernet)

Simics - www.simics.com (because it has backward
stepping)

In a class by itself

printk() / trace_printk() AND of course ftrace!

http://www.simics.com/

15

© 2014 Wind River

Debugging in 2014
ftrace reins supreme! trace_printk + dumps

Simulators and virtualization backends

perf

pstore / ramoops

uprobes and systemtap

kprobes

gdb / KGDB / KDB

lttng

kdump

16

© 2014 Wind River

The kernel black box
Kernel Args:

ftrace=function ftrace_dump_on_oops
ftrace_filter=“EXPRESSION”

Where EXPRESSION might be *ata*

17

© 2014 Wind River

pstore / ramoops
Kernel config options:

CONFIG_PSTORE=y CONFIG_PSTORE_CONSOLE=y
CONFIG_PSTORE_FTRACE=y CONFIG_PSTORE_RAM=y

Know your target HW for 128 megs ram (kernel args)

mem=127M

ramoops.mem_size=0xa0000

Do not use full final meg of ram

ramoops.mem_address=0x7f00000

Collect ftrace

echo 1 > /sys/kernel/debug/pstore/record_ftrace

18

© 2014 Wind River

Booting with KVM / QEMU
You can test this with KVM/qemu which does
not re-write the RAM

Assumes kernel is built with correct config
options

You can then use system_reset

Example:

qemu-system-x86_64 -nographic -kernel arch/x86/boot/bzImage
"console=ttyS0,115200 ip=dhcp root=/dev/nfs
nfsroot=10.0.2.2:/space/exp/x86 rw acpi=force clock=pit UMA=1
kgdbts= mem=127M ramoops.mem_size=0x100000
ramoops.mem_address=0x7f00000" -m 128

19

© 2014 Wind River

Ramoops Rocks!
Here is a video using pstore/ramoops to catch the console and
ftrace logs

https://www.youtube.com/watch?v=hUsm4vmYYWo

Play

Video

https://www.youtube.com/watch?v=hUsm4vmYYWo

20

© 2014 Wind River

What do tools do you need?
Multi Virtual machine synced logs?

CPU trace data?

Complete function tracer for user space?

Control ftrace ring buffer size from boot?

Dtrace…………..

I dream of a multi-queue ethernet device with a pipe for the
debugger

21

© 2014 Wind River

22

© 2014 Wind River

Backup Slides

23

© 2014 Wind River

EHCI Debug Port
Great for when you do not have rs232

Higher speed than rs232

Works with KGDB

kgdbdbgp=0

Use it as a Linux Console

console=ttyUSB0 AND/OR earlyprintk=kdbgp0

Read more in your kernel source tree:

Documentation/x86/earlyprintk.txt

You can buy one at

http://www.semiconductorstore.com/cart/pc/viewPrd.asp?idproduct=12083

24

© 2014 Wind River

KDB – kernel debug shell History

The goal of the merge KDB and KGDB was simple:

Unify the fragmented kernel debugger communities

KDB was a derived from from the 10 year old project:

ftp://oss.sgi.com/projects/kdb/download/v4.4/

The merge work started in 2009 with many prototypes

Originally KDB was > 64,000 lines of changes for just x86

After some significant gutting of anything that was common, the result was
a platform independent KDB hooked up to the same infrastructure
(debug_core) that is used by KGDB.

The final KDB patch set was < 8500 lines of changes

For more information about differences in SGI KDB vs mainline KDB

https://kgdb.wiki.kernel.org/index.php/KDB_FAQ

ftp://oss.sgi.com/projects/kdb/download/v4.4/
ftp://oss.sgi.com/projects/kdb/download/v4.4/

25

© 2014 Wind River

KDB – The in-kernel debug shell
To use KDB you must meet one of following constraints

Use a non usb keyboard + vga text console

Use a serial port console

Use a USB EHCI debug port and debug dongle

KDB is not a source debugger

However you can use it in conjunction with gdb and an
external symbol file

Maybe you don't need a kernel debugger, but you at
least want a chance to see ftrace logs, dmesg, poke a
stack trace or do one final sysrq.

 KDB might still be the tool you are looking for

26

© 2014 Wind River

Loading KDB
Having KDB loaded allows you to trap the panic handler.

For a serial port:

echo ttyS0 > /sys/module/kgdboc/kernel/kgdboc

For the keyboard + vga text console

echo kbd > /sys/module/kgdboc/kernel/kgdboc

Enter KDB with sysrq-g

echo g > /proc/sysrq-trigger

Remember KDB is a stop mode debugger

Entering KDB means all the other processors skid to a stop

You can run some things like: lsmod, ps, kill, dmesg, bt

ftdump to dump ftrace logs (not merged to mainline yet)

You can also use hw breakpoints or modify memory

27

© 2014 Wind River

KDB “crash” course

Simply loading KDB gives you the opportunity to stop
and look at faults perhaps using external tools

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

insmod test_panic.ko

echo 1 > /proc/test_panic/panic

After the panic collect dmesg, ftdump, bt, and lsmod

Use gdb to load the symbol file and kernel module

gdb ./vmlinux

add-symbol-file test_panic.ko ADDR_FROM_LSMOD

info line *0xADDR_FROM_BT

28

© 2014 Wind River

Pre-recorded Demonstration 1

Example of a useless call to panic()

http://www.youtube.com/watch?v=V6Qc8ppJ_jc

Example of finding the useless call to panic()

http://www.youtube.com/watch?v=LqAhY8K3XzI

http://www.youtube.com/watch?v=V6Qc8ppJ_jc
http://www.youtube.com/watch?v=V6Qc8ppJ_jc
http://www.youtube.com/watch?v=LqAhY8K3XzI
http://www.youtube.com/watch?v=LqAhY8K3XzI

29

© 2014 Wind River

KDB Demonstration 2 - breakpoints
Load KDB and use a data write breakpoint

insmod test_panic.ko

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

echo g > /proc/sysrq-trigger

bph tp_address_ref dataw

go

Cause the problem and collect the data

echo 1 > /proc/test_panic/bad_access

bt

rd

lsmod

Statically look at the source with gdb + module address

30

© 2014 Wind River

Pre-recorded Demonstration 2

Example of a kernel bad paging request

http://www.youtube.com/watch?v=bBEh_UduX04

Example of using HW breakpoint in kdb

http://www.youtube.com/watch?v=MfJU2E0aJwg

http://www.youtube.com/watch?v=bBEh_UduX04
http://www.youtube.com/watch?v=bBEh_UduX04
http://www.youtube.com/watch?v=MfJU2E0aJwg
http://www.youtube.com/watch?v=MfJU2E0aJwg

31

© 2014 Wind River

Remember KDB is KGDB too!

If you only have a single serial port, it just got
easier to use KGDB if you want to use it.

Try the agent-proxy

The agent-proxy is nothing more then a tty →
tcp connection mux that can allow you to
connect more than one client application to a
tty

You can even use the agent-proxy with the
EHCI debug port device.

32

© 2014 Wind River

Sharing the console - kgdboc

agent-proxy

Target System

With serial port

For console access

telnet localhost 2223

gdb

target remote localhost:2222

33

© 2014 Wind River

KGDB demonstration setup
Use a connection multiplexer

– By default you can only connect one application at a time to the console

– In the case of kgdboc you want an interactive console & a debug port

agent-proxy CONSOLE_PORT^DEBUG_PORT IP_ADDR PORT

More or less turns your local serial port into a terminal server

agent-proxy 2223^2222 0 /dev/ttyS0,115200

Use it to multiplex a remote terminal server or simulator connection

agent-proxy 2223^2222 128.224.50.38 8181

The agent-proxy is now available:

 git clone git://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git

 cd agent-proxy ; make

34

© 2014 Wind River

KGDB demonstration
On the target system

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

insmod test_panic.ko

In gdb
tar remote localhost:2222

break sys_sync

c

On the target
sync

In gdb
awatch tp_address_ref

inf br

c

On the target
echo 1 > /proc/test_panic/bad_access

Back to gdb where we can pass along the exception
 signal 9

35

© 2014 Wind River

Pre-recorded Demonstration 3

Start up the agent-proxy and connect and hit a
breakpoint a sys_sync

http://www.youtube.com/watch?v=sWiHV5mt8_k

Data Access breakpoint on tp_address_ref

http://www.youtube.com/watch?v=nnopzcwvLTs

http://www.youtube.com/watch?v=sWiHV5mt8_k
http://www.youtube.com/watch?v=sWiHV5mt8_k
http://www.youtube.com/watch?v=nnopzcwvLTs
http://www.youtube.com/watch?v=nnopzcwvLTs

36

© 2014 Wind River

References

KGDB/KDB Website

http://kgdb.wiki.kernel.org

KGDB/KDB Mailing list

kgdb-bugreport@lists.sourceforge.net

https://lists.sourceforge.net/lists/listinfo/kg
db-bugreport

Source code used in this presentation

The 2.6.36 kernel was used

The kernel module code can be found at:
http://kernel.org/pub/linux/kernel/people/jwessel/dbg_webinar/crash_mod.tar.bz2

http://kgdb.wiki.kernel.org/
http://kgdb.wiki.kernel.org/
mailto:kgdb-bugreport@lists.sourceforge.net
mailto:kgdb-bugreport@lists.sourceforge.net
mailto:kgdb-bugreport@lists.sourceforge.net
mailto:kgdb-bugreport@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport
https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport
https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport
https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport
https://lists.sourceforge.net/lists/listinfo/kgdb-bugreport
http://kernel.org/pub/linux/kernel/people/jwessel/dbg_webinar/crash_mod.tar.bz2
http://kernel.org/pub/linux/kernel/people/jwessel/dbg_webinar/crash_mod.tar.bz2

37

© 2014 Wind River

KGDB facts
KGDB and KDB use the same debug backend

kgdboe (KGDB over ethernet) is not always reliable

kgdboe in the current form WILL NOT BE MAINLINED

Linux IRQs can get preempted and hold locks making it
unsafe or impossible for the polled ethernet driver to run

Some ethernet drivers are so complex with separate kernel
thread that the polled mode ethernet can hang due to
locking or unsafe HW resource access

If you really want to attempt use kgdboe successfully, use a
dedicated interface if you have one and do not use kernel
soft or hard IRQ preemption.

kgdboc is slow but the most reliable

The EHCI debug port is currently the fastest KGDB
connection

38

© 2014 Wind River

