
Copyright (C) 2000 WireX Communications, Inc.

— 1 —

CryptoMark: Locking the
Stable door ahead of the
Trojan Horse

WireX Communications, Inc.
www.wirex.com
www.immunix.org

Crispin Cowan, Steven M. Beattie
Andrew P. Black, Calton Pu, Lateef P. Yang1

Abstract

Once attackers have penetrated a system, they will usually take
advantage of their position by extending their reach to compromise
other systems (e.g., by sniffing passwords from the network), and
by installing “back doors” that will enable them to regain access
even if the original insecurity is repaired. A common approach is to
install a modified version of a standard system daemon such as tel-
netd. It is also common for attackers to attempt to cover their tracks
by installing doctored versions of standard programs like ls, ps and
sum. Programs like this, which conceal something harmful inside a
harmless looking exterior, are called Trojan Horses.

CryptoMark detects Trojan Horses as they are about to be activated.
It is similar in its goals to Kim and Spafford’s Tripwire, but detects
intrusions with lower latency. That is, rather than laying dormant
until the system administrator next runs a Tripwire integrity check,
CryptoMark would detect a Trojan Horse as soon as it is run.
Another difference is that CryptoMark can be configured to prevent
the Trojan Horse from running at all.

Deploying a Trojan Horse involves installing code crafted by the
attacker or imported from another site. In principle, this can be
detected by requiring that all code that runs on a system be certi-
fied. Using Public Key Cryptography, it is possible to sign execut-
able binaries to indicate that they are genuine, and to check the
signature on a binary before it is executed. The Trojan Horse would
then be exposed before the system is put at risk by loading it.

1.Black and Yang are collaborators at the Oregon Graduate Institute. Pu is a collaborator at the Georgia In-
stitute of Technology.

Copyright (C) 2000 WireX Communications, Inc.

— 2 —

But what is possible in principle does not always work well in prac-
tice. Our goals in developing CryptoMark was to deploy code certi-
fication as an intrusion detection tool in a real system (LINUX
version 2.0.36) so that its practical impact can be evaluated. The
paper makes three contributions. First, we show that the implemen-
tation of binary code certification in a modular system like LINUX is
simple. Second, we discuss configurations that trade different
degrees of security for different degrees of inconvenience, but in all
cases we are able to find reasonable points of compromise. Finally,
we show that the impact of the additional checks on system perfor-
mance is small enough to encourage the wide adoption of this tech-
nology.

1 Introduction and Motivation
The idea that Public Key Cryptography can be used to digitally sign a document, thus establishing
its authenticity, is as old as public key cryptography itself [1]. Toolkits that implement the basic
cryptographic algorithms are now widely available, for example, PGP [2] and GPG [3]. Cryp-
toMark, described in this paper, represents the practical application of these ideas in a way that pre-
vents unauthorized programs from running on the protected system. Alternatively, CryptoMark
can be configured to allow unauthorized programs to run, but to generate a log record detailing the
attempt.

When intruders gain access to a system, they frequently try to down-load and run programs that
will either seek to discover further weaknesses in the system, or install a back door, or will hide
these very activities from legitimate users and system managers. Using CryptoMark, the running
of these programs can be prevented or detected.

CryptoMark is similar in many respects to Tripwire [4, 5]. Tripwire and CryptoMark both collect
vital statistics about files, which are later used to detect tampering with those files. Tripwire oper-
ates “off-line”, in the sense that comparison between the current version of the file and the previ-
ously recorded version is done when explicitly requested by the system administrator, for example,
at 8am every morning. CryptoMark is “on-line”, in the sense that the comparison is done every
time that the binary is executed. However, Tripwire is more general than CryptoMark, since it can
be applied to any file (for example, configuration files), while CryptoMark protects only execut-
able files.

1.1 The basic idea
The basic idea behind digital signatures is simple. Suppose that Alice wants a digital signature. Al-
ice first obtains a pair of keys kpub and kpriv, known as her public and private keys. These keys have
the property that if a file (or other sequence of bytes) is first encrypted with kpriv, and the result is
then encrypted a second time, with kpub, the original file is obtained.

Knowledge of kpriv is like possession of a rubber stamp bearing Alice’s signature. Knowledge of
kpub is like the ability to compare the imprint of a stamped signature on a document with the real
thing. kpub, as its name implied, is intended to be public, for example, Alice might publish it in an
Internet directory, so that anyone who is presented with a document d that claims to be signed by
Alice can test that fact by obtaining Alice’s public key kpub, and encrypting d with kpub. If the result

Copyright (C) 2000 WireX Communications, Inc.

— 3 —

makes sense, d was genuine. If the result is gibberish, then d was a forgery. (Note that this is just
the opposite of what one would do to maintain secrecy; in that case the sender would encrypt with
the public key of the recipient, and the appropriate private key would be needed to read the con-
tents.)

In practice, a transmitted document normally contains both the unencrypted and the encrypted ver-
sion of the original file, so that it is easy to test whether the second encryption actually generates
the original text. Because this would make the transmitted document much larger, it is usual to per-
form the encryption not on the entire file, but instead on a “digest”, a hash of the file contents pro-
duced by a digest function.

A digest is a function that takes a (usually large) file and produces a (usually much smaller) result
called a hash value. A simple example is a CRC or checksum function, which adds the bytes in the
original file together, modulo 232or 264. In general, digests are designed to resists inversion— find-
ing another input that produces a known output— and collision— finding two inputs that generate
the same hash value. A good digest will depend on every bit of the input, because if it does not, it
would be possible to tamper with some of the bits without being detected. MD5 [6] is a digest func-
tion that generates a 128-bit hash from a file of arbitrary length. MD5 is widely regarded as being
secure, and software implementations are now widely available.

1.2 Applying the idea
Given this background, it is easy to see how to use digital signatures to check the authenticity of a
binary program.

1. On a secure (possibly non-networked) computer S, Alice generates the binary in the usual way,
using her favourite compiler and linker. On LINUX, the result is a loadable file in Executable
Linkable Format (ELF).

2. Alice computes the MD5 digest of the executable portions of the ELF, and then encrypts the
digest with kpriv. The result is called a certificate for that file

3. She then appends the encrypted digest to the original file, creating a signed version of the binary
file.

4. The signed file can now be copied from S to the system P that requires guarding. If S is not on
the network, the file can be transmitted by “sneaker net” using a removable medium disk.

5. On P, before the binary is executed, the operating system kernel first checks that the MD5 digest
computed from the executable portions of the file and the MD5 digest obtained by decrypting
the certificate with kpub are identical.

6. If they are identical, then we can assume with high confidence that the file was indeed signed
by Alice, or at least by someone who has Alice’s private key. If they are not, then the file is a
forgery, or has been corrupted in some way. In either case, an alert should be sounded.

CryptoMark may thus be thought as having two components: a set of utility programs that run on
S, and a kernel modification that is inserted into P. Of course, it is possible for S and P to be the
same machine; this is convenient, but opens the possibility that an attacker may manage to capture
the secret key, and thus gain the ability to forge Alice’s signature. We do not recommend running
CryptoMark in this configuration.

Copyright (C) 2000 WireX Communications, Inc.

— 4 —

2 The Implementation
Our first finding is that implementing CryptoMark on LINUX was relatively simple. The bulk of the
work was done in three months by an undergraduate student intern, Lateef Yang. The encryption
and verification functions were taken from Gnu Privacy Guard (GPG) [3], a GPL implementation
of the OpenPGP standard [7]. We use the El Gamal encryption algorithm; the key length is chosen
at key generation time. The MD5 code was extracted from the Redhat Package Manager [8].

The LINUX ELF format already provided meta-data to distinguish executable code from other in-
formation (such as symbol table data); loadable data is contained in PT_LOAD segments. Thus it
was easy to compute the digest function on these segments only. The ELF data schema has a note
segment type (SHT_NOTE); this is used for storing the signed digest, so inserting it was not difficult.

An alternative implementation would be to store the signatures in an auxiliary file, either a system-
wide auxiliary table or one additional file per executable. This has the advantage of generality; for
example, it could be used for shell scripts and other executables that are not ELF files. It has two
disadvantages: it is harder to maintain, because an additional file or table entry must be installed
along with every executable, and it is less efficient, because two files must be accessed at exec time
rather than one. A possible compromise (which has not yet been implemented) would be to use em-
bedded certificates for ELF files, and an auxiliary table for other executables.

The software developer is provided with three commands:

• cm_insert <filename>

• cm_check <filename>

• cm_keygen --gen-key

cm_keygen is derived from the GPG command, except that by default it writes the public and private
keys to files in the directory /etc/.CryptoMark. cm_insert computes a digest for the file that is provided as
its argument, signs the digest with the key from /etc/.CryptoMark, and inserts the resulting certificate
back into the file.

cm_check is a utility function that enables the developer to ascertain whether a file has never been
certified, has been certified with a valid certificate, or contains a certificate that does not match its
contents.

2.1 KernelGuard
On the protected system, the function of checking the validity of the certificate is performed by a
loadable LINUX kernel module called KernelGuard. KernelGuard can be configured to check every
ELF binary that is passed to it before it is run, or to check only some binaries. In addition to the
KernelGuard module, some changes to the LINUX kernel itself were necessary to provide an inter-
face into which KernelGuard can be plugged. In addition calls to KernelGuard were added to exec.
In total, the additions to the LINUX kernel amounted to about 100 lines of highly commented code.

The KernelGuard module itself is 123 kB of binary code. The huge size is due to the inclusion of
substantial cryptographic support, including arbitrary-precision arithmetic libraries to support ex-
ponentiation for the El Gamal algorithms. KernelGuard needs two inputs to do its work: the public

Copyright (C) 2000 WireX Communications, Inc.

— 5 —

key (corresponding to the private key used by the developer to sign the file originally), and config-
uration data.

The location of the public key can be specified at the time that the KernelGuard module is loaded.
The key is read into kernel memory the first time that KernelGuard runs, and then remains in mem-
ory. It is not read again until the operating system is rebooted. This provides some protection
against the public key being spoofed. Even if an attacker did succeed in inserting a Trojan Horse
binary in to the file system, signing it with a new private key and planing the corresponding new
public key into the file system, the operating system would have to be rebooted before the new pub-
lic key would have any effect. Because there is only a single system-wide public key, attempts to
execute any of the legitimate system programs (such as init, login, etc.) would then fail. For the re-
boot to succeed, every CryptoMark-protected binary in the file system would have to be replaced
by a new version that had been signed by the new, fraudulent, key.

3 Configuration
KernelGuard can be configured to require valid certificates in all or some binary files. The decision
of whether or not to require a certificate is currently based on the user id under which the binary
will be run.

The simplest and most secure configuration is to require a certificate in every binary. This might
be appropriate for a server machine, such as a web server or a mail server, on which users are not
expected to run their own code; any attempt to do so would indicate an attack. This configuration
might also be appropriate for a desktop machine in a corporate environment, where users do not
write their own code and where only code approved by the system administration staff is permitted.
This setting would prevent naive users from, for example, down-loading and running dangerous
binary code form the internet.

A common, more permissive, configuration is to set KernelGuard to require signatures on all bi-
naries that will run as root, whether they are suid root or simply inherit root context from their par-
ent. This would enable students, or software developers, to continue to compile and test programs
under their own user names, but would prevent one of them, for example, from writing and running
a network sniffer, even if they were able to obtain root privilege. In general, in a system where dif-
ferent user identifiers have different levels of privilege, the more privileged users are those that
should be protected by CryptoMark.

The action that the protected system takes when an un-certified (or incorrectly certified) binary is
found might also be varied. One possibility is to abort the attempt to exec the program. This pro-
tects the system, but alerts the attacker. Another possibility is to run the unsafe program anyway,
and to generate a silent alarm that is transmitted to system administrators or other intrusion detec-
tion systems. CryptoMark can thus be used as a source of intrusion events that then trigger other
systems in the network to take protective action.

Note that if the secret key is stored on the same machine that is being protected, it is very likely
that attackers who are able to become root on that machine would also be able to steal the secret
key, and thus would be able to certify their own binaries. For this reason we consider such a con-
figuration unsafe, and do not recommend it.

Copyright (C) 2000 WireX Communications, Inc.

— 6 —

4 Performance
Our measurements of the performance impact of CryptoMark are so far preliminary. All of the
numbers reported here are measured on a 120MHz Pentium processor with no level 2 cache and
32MB of RAM— a very modest configuration. 1024-bit keys were used for the EL Gamal encryp-
tion.

The time taken to sign a binary is low, compared to the overall time taken by the compilation pro-
cess. We have not worked to speed-up the operation of cm_insert; it takes (very approximately) one
half-second per Megabyte to sign a typical binary, in addition to set up time for cm_insert. Signing
emacs (version 20.3.1, from the Redhat 5.2 distribution) takes 3.9 s with a cold file system cache. It
took 7 minutes 5 seconds to generate signed versions of all 914 ELF binaries from the Redhat 5.2
/usr/bin directory; sizes of these binaries ranged from 3.4 kB for dumpreg to 12MB for netscape.

GIven these modest costs, it seems entirely reasonable to sign all binaries at the time that they are
created. But what of the cost of the certificate check that takes place in KernelGuard whenever a
certified binary is run?

Decrypting the digest with the public key is fast, because the digest is only 128 bits long. However,
re-computing the digest over all of the loadable code segments in the ELF file is potentially time-
consuming, because, at the very least, all of the loadable code in the executable file must be read.

Note that normally (without KernelGuard) code can be loaded on demand: it is not necessary to
read all of the code before commencing execution. However, KernelGuard must read all of the
code before it can compute the MD5 hash. It turns out that because of a feature of the LINUX dy-
namic code loading process, the normal LINUX kernel also reads the all of the loadable code eager-
ly. Thus, KernelGuard does not introduce as much of a performance penalty as one might expect.
After all, the kernel is already “handling” every byte of the executable.

Measurements show that the cost of KernelGuard is about 300 ms–400ms for a 3MB binary like
emacs. This is of course independent of source of the data. When the file to be exec’d is already in
the file cache, the time for emacs to start up and exit immediately is only 80ms, so this overhead
represents a factor of 4 or 5. However, when the file is not in the buffer cache, starting emacs takes
about 3 s, so the overhead is closer to 10 or 12 per cent. That is, fork +exec is 10 or 12 per cent
slower. Overall, if a system spends 1 per cent of its time executing fork and exec, the slowdown
due to KernelGuard would be of the order of 0.1 per cent.

It is conceivable that systems executing some applications do repeatedly exec the same ELF file
from the buffer cache, and will thus experience the more significant (factor of 4 or 5) slowdown.
If this turns out to be a problem, it may be possible to remedy it by caching the previously comput-
ed MD5 digest in the kernel along with the file. Changing the file on disk would still cause the buff-
er cache to be refreshed and the digest to be re-computed. However, caching the MD5 digest would
open up another possible attack: changing the file image in the kernel’s buffer cache. It would also
complicate the inter-module dependencies in the kernel. If the slowdown suffered by repeated ex-
ecutions of the same binary turns out to be a problem, this issue will need to be examined more
carefully.

With this exception, our preliminary tests showed that CryptoMark has no observable performance
impact at execution time. We plan to carry out more careful measurements of the performance im-

Copyright (C) 2000 WireX Communications, Inc.

— 7 —

pact of CryptoMark and would like to present the results at the RAID workshop and in the final
version of this paper.

5 Conclusion
We believe that digital signatures can be used for intrusion detection by protecting production op-
erating systems from Trojan Horse attacks. The underlying technology is now widely available,
and on modern hardware the performance impact is negligible. The reports generated by Cryp-
toMark are valuable as indications of intrusion in their own right, but can also be used as a source
of intrusion events for other components in the IDS arsenal

There is always a trade-off between security and convenience. However, we believe that the secu-
rity offered by CryptoMark is worth the cost in terms of the extra steps that become necessary to
install new software. This is particularly true in a server environment, where all software should in
any case be installed by trained system management personnel.

The present implementation of CryptoMark is experimental. We plan to combine CryptoMark with
CoDomain, another research project that we are conducting at the Oregon Graduate Institute to en-
hance the survivability of servers. It is our intention to release the combined code to the community
for evaluation and testing.

References
[1] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on

Information Theory, vol. IT-22, pp. 644–654, 1976.

[2] P. R. Zimmerman, The Official PGP User's Guide. Boston: MIT Press, 1995.

[3] W. Koch, “The GNU Privacy Guard,” . Düsseldorf, Germany: http://www.d.shuttle.de/isil/
gnupg/, 1999.

[4] G. H. Kim and E. H. Spafford, “Experiences with Tripwire: Using integrity checkers for
intrusion detection,” presented at Systems Administration, Networking and Security
Conference III, 1994.

[5] G. H. Kim and E. H. Spafford, “The Design and Implementation of Tripwire: A File System
Integrity Checker,” presented at 2nd ACM Conference on Computer and Communications
Security, Fairfax, Virginia, 1994.

[6] R. Rivest, “RFC 1321: The MD5 Message-Digest Algorithm.,” RSA Data Security, Inc.
April 1992.

[7] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, “RFC 2440: OpenPGP Message
Format,” , Proposed Standard November 1998.

[8] RPM, “The RPM Home Page,” http://www.rpm.org/ April 1998.

